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Statistical mechanical approach to Fukui-Ishibashi traffic flow models
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We consider cellular automaton models for one-dimensional traffic flow problems. Starting with a micro-
scopic relation for the updating rule describing the occupancy on each site of the road, a macroscopic evolution
relation for the average speed of cars can be obtained by carrying out statistical averages. Mean field equations
are obtained by considering the asymptotic form of the evolution relation. This gives the average car speed in
the long time limit as a function of the car density. The evolution relation is a nonlinear mapping between the
average speeds at two consecutive time steps. The mean field results can be obtained by studying the attractors
of the mapping. The approach is applied to study the model recently proposed by Fukui and Ishibashi. Our
calculations show that for models in which the maximum speed of each car isM , a decoupling scheme
retaining correlations up toM11 sites can be applied to the calculation of spatial correlations involving more
thanM11 sites. Exact results are obtained using our approach for models without random delay. For models
with random delay, results are in good agreement with simulation results.@S1063-651X~98!00403-6#

PACS number~s!: 64.60.Ak, 05.40.1j, 05.70.Jk, 89.40.1k
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I. INTRODUCTION

Traffic flow is a complex system. The usual method
studying these problems is to perform numerical simulati
using high-speed parallel computing. Cellular automa
models become increasingly important in traffic flow pro
lems due to their simplicity, and easiness in implementat
in computers@1#. These models capture the nonlinear beh
ior of traffic flow problems. For example, the two
dimensional Biham-Middleton-Levine~BML ! cellular au-
tomaton model gives the transition between a moving ph
and a jamming phase in the traffic of a city@2#. These models
can also be easily modified to deal with the effects of re
istic traffic conditions. Cellular automaton models have b
come the major approach in studying traffic flow problem

An important question in one-dimensional traffic flow o
a highway deals with the optimum car density for achiev
maximum traffic flux. The basic relation in traffic enginee
ing is the one relating the flux or the average speed of car
the car density on the road@3#. These relations can be ob
tained by measurements on actual traffic simulations.
theoretical models, the basic relation can be obtained by
merical simulations. For some simple models, one can ob
the relation analytically using qualitative arguments with
some reasonable approximations. These mean field
proaches provide us with some physical understanding of
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traffic models@4–7#. It is useful to derive mean field theorie
that give the basic relation in quantitative agreement w
actual situation and with numerical simulations, as they c
be used for analytical predictions in traffic control. Howev
it is usually difficult to obtain mean field theories with qua
titative accuracy. For cellular automaton traffic flow pro
lems, successful mean field theory has been proposed fo
simplest one-dimensional case in which the maximum sp
vmax of a car at a time is 1. For models with acceleration
proposed by Nagel and Schreckenberg~NS! @8,9# and with
random delay as proposed by Fukui and Ishibashi~FI! @10#,
numerical results are only available forvmax.1 cases. For
the two-dimensional BML model, Nagatani proposed a me
field theory, that is only in qualitative agreement with sim
lation data. Wang, Woo, and Hui proposed an improv
mean field theory with results in better agreement with n
merical results@11,12#. However, the previous mean fiel
theories are phenomenological. They were not derived us
statistical mechanical approaches starting from the mic
scopic details of the models. In general, the agreement
tween these mean field theories and numerical simulation
not so satisfactory.

Our aim is to study traffic flow problems from a micro
scopic point of view. Starting from the microscopic updati
rule of a Boolean variable related to the occupancy defi
on each site, the average speed at timet can be obtained in
terms of these variables. Systematic statistical mechan
treatment can be carried out. A decoupling scheme is in
duced to deal with the spatial correlation functions involvi
averages over products of Boolean variables on a string
neighboring sites. A macroscopic dynamical mapping is th
obtained for the average speed. Mean field results can
obtained by studying the attractors of the nonlinear dyna
cal system defined by the mapping.
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The microscopic approach in deriving macroscopic res
is in line with the viewpoint of statistical mechanics an
nonlinear dynamics. Such an approach is useful in our
derstanding of traffic flow systems. In Refs.@13,14#, we stud-
ied the NS model withvmax51 as a first attempt in deriving
results within such an approach. In this paper, we shall
ther study the FI model@10# of high-speed cars, i.e.,vmax
.1. For thevmax52 FI model, a dynamical relation be
tween the average speedsV(t) andV(t11) is obtained. For
the vmax52 model without delay, we obtained results
exact agreement with numerical results. For the model w
random delay, mean field results are obtained by study
the attractors of the dynamical mapping. Results with an
bitrary degree of random delay are in good qualitative
well as quantitative agreement with simulation data. The
proach in this work can be generalized to treat the o
dimensional NS model, the two-dimensional BML mod
and other models with realistic traffic situations incorp
rated.

II. MODELS AND EVOLUTION EQUATIONS

The basic cellular automaton model describing a o
dimensional traffic flow problem is rule 184, as classified
Wolfram @1#. Within the model, cars are treated as dist
guishable particles. The road is modeled by a discrete lat
Each lattice site can be occupied by at most one car.
system evolves in discrete time steps. At each time step,
particle on the road moves forward one site to the right, s
if the site on the right is not occupied by another car at
previous time step. If the site in front is occupied, the c
will remain stationary even if the blocking car moves aw
from the site in front. This model, though simple, exihib
the phenomenon of transition between a moving phase
maximum possible speed to a partially jamming phase w
slower speed. As a generalization of the basic rule 1
Fukui and Ishibashi@10# considered a model in which a ca
may have maximum speedvmax5M (M.1). At each time
step, if there areM or more empty sites in front of a car, th
car moves forwardM lattice sites. If there are onlyN (N
,M ) empty sites in front of the car, the car moves forwa
N sites. Furthermore, a model with random delay can
introduced in the following way. When a car can move fo
ward byM sites, there is a probabilityf that the car will slow
down and move forward by onlyM21 sites. It should be
pointed out that the acceleration mechanism in the FI mo
is different from that of the NS model, and that each of the
models reflects part of the actual situation in realistic tra
problems.

Let si(t) be a Boolean variable describing the occupan
of the i th lattice site at timet. The variable takes onsi(t)
51 if the site is occupied andsi(t)50 if the site is empty.
Rule 184 can be expressed as

si~ t11!5si~ t !si 11~ t !1si 21~ t ! s̄ i~ t !, ~1!

where s̄ i(t)[12si(t) is the conjugate of the Boolean var
ablesi(t). The variablessi(t) and s̄ i(t) have the properties

si~ t !si~ t !5si~ t !, si~ t ! s̄ i~ t !50. ~2!
ts
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For the FI model withvmax5M and random delay, the up
dating rule is given by

si~ t11!5si~ t !si 11~ t !1si 21~ t ! s̄ i~ t !si 11~ t !

1si 22~ t ! s̄ i 21~ t ! s̄ i~ t !si 11~ t !1•••

1si 2M11~ t ! s̄ i 2M12~ t !••• s̄ i 21~ t ! s̄ i~ t !si 11~ t !

1u i 2M11,t~ f !si 2M11~ t ! s̄ i 2M12~ t !

3 s̄ i 2M13~ t !••• s̄ i 21~ t ! s̄ i~ t ! s̄ i 11~ t !

1u i 2M ,t~12 f !si 2M~ t ! s̄ i 2M11~ t ! s̄ i 2M12~ t !

3••• s̄ i 22~ t ! s̄ i 21~ t ! s̄ i~ t !, ~3!

whereu i ,t( f ) is a random delay factor of thei th site at time
t. It takes on the value unity with probabilityf , and vanishes
with probability f̄ [12 f . The factoru i ,t( f ) can be called a
stochastic Boolean variable, and its corresponding conjug
is u i ,t( f )[12u i ,t( f )5u i ,t( f̄ ), which takes on the value
unity with probability 12 f and vanishes with probabilityf .
The variables on the same site at the same time satisfy
relations

u i ,t~ f !u i ,t~ f !5u i ,t~ f !, u i ,t~ f !u i ,t~ f !50. ~4!

To illustrate our approach, we consider the FI model w
M52. It is straightforward to generalize our method to cas
with higher values ofM . The basic updating rule becomes

si~ t11!5si~ t !si 11~ t !1si 21~ t ! s̄ i~ t ! s̄ i 11~ t !

1u i 21,t~ f !si 21~ t ! s̄ i~ t ! s̄ i 11~ t !

1u i 22,t~12 f !si 22~ t ! s̄ i 21~ t ! s̄ i~ t !. ~5!

Let L be the total number of sites on the road andN be
the total number of cars. The average speed at timet can be
expressed microscopically as

V~ t !5
1

p
@^si~ t ! s̄ i 11~ t !&

1^u i ,t~12 f !si~ t ! s̄ i 11~ t ! s̄ i 12~ t !&#, ~6!

where p5N/L is the car density. The angular brack
^•••&5(1/L)( i 51

L (•••) represents the spatial average of t
microscopic quantities in the curly bracket. This type of a
erages gives the spatial correlation over a number of ne
boring sites.

We note that nonvanishing contributions to the avera
^•••& come only from terms wheresj (t) takes on the value
unity, and wheres̄ k(t) takes on unity, and hencesk(t) takes
on zero. Hence we introduce the following simplified not
tions to denote the averages:

^si~ t ! s̄ i 11~ t !&5^10& t ,

^si~ t !si 11~ t !&5^11& t , ~7!

^si~ t ! s̄ i 11~ t ! s̄ i 12~ t !&5^100& t .
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etc. For the random variablesu i ,t( f ) there are nonvanishing
contributions only when they take on the value unity. The
fore, they can be taken outside the angular bracket and
placed simply by a factorf . Equation~6! for the microscopic
expression of the average speed at timet can then be rewrit-
ten as

V~ t !5
1

p
@^10& t1~12 f !^100& t#. ~8!

We can also write down the average speed at timet11
from Eq. ~6! as

V~ t11!5
1

p
^si~ t11! s̄ i 11~ t11!@22u i ,t11~ f !

2u i ,t11~12 f !si 12~ t11!#&, ~9!

Substituting Eq.~5! into Eq. ~9!, and using the relations o
the Boolean variables given by Eqs.~2!–~4!, we obtain the
average speed at timet11 expressed in the simplified nota
tions as

V~ t11!522 f 2
1

p
$~22 f !@^111& t1^1011& t

1~12 f !^10 011& t#1~12 f !@^1101& t

1^10 101& t1 f ~^1100& t1^10 011& t

1^10 100& t!1~12 f !~^100 101& t1^100 011& t!

1 f ~12 f !^100 100& t#%. ~10!

Equations~8! and ~10! give the relation betweenV(t) and
V(t11) at two consecutive time steps. Forf 51, the FI
model reduces to thevmax51 case, which corresponds to th
basic rule-184 model. The equations become

V~ t !5
1

p
^10& t , V~ t11!512

1

p
~^111& t1^1011& t!.

~11!

For f 50, Eqs.~8! and~10! give the results corresponding t
the vmax52 FI model without random delay. The equatio
become

V~ t !5
1

p
~^10& t1^100& t!,

V~ t11!522
1

p
@2~^111& t1^1011& t1^10 011& t!1^1101& t

1^10 101& t1^100 101& t1^100 011& t#. ~12!

III. DECOUPLING OF SPATIAL CORRELATION
FUNCTIONS

In order to derive a relation betweenV(t) and V(t11),
we need to treat the spatial correlation functions which
averages of the Boolean variablessi(t) over a string of
neighboring sites. For the FI model without random de
and whenvmax51, the two-site correlation function̂10& t
-
e-

e

y

can be obtained from Eq.~11! as^10& t5pV(t). From this we
have

^11& t5^1& t2^10& t5p@12V~ t !#,

^00& t512p2pV~ t !. ~13!

The averagê110& t , which involves more than two sites, ca
be treated according to probability theory as@9# ^110& t
5^11& t P(11u0)t , whereP(11u0)t is the conditional prob-
ability that the (i 12)th site is empty given that thei th and
( i 11)th sites are occupied. Since each particle can o
move forward one site at a time for thevmax51 model, the
influence on the variables(t) at a site at timet comes only
from the two neighboring sites. Therefore, we may igno
correlations involving more than two sites and retain on
two-site correlations. We have

P~11u0! t5P~1u0! t5
^10& t

^1& t
5V~ t !, ~14!

It follows that

^110& t5pV~ t !@12V~ t !#. ~15!

For thevmax52 model without random delay, each pa
ticle can at most move forward two sites at a time. In th
case, we cannot simply ignore correlations involving mo
than two sites. Not only does the change in the variablesi(t)
at a site at timet depend on the states of the neighbori
sites, it also depends on the states of the next nearest n
bors. Therefore we should treat three-site correlations m
accurately, and decouple correlations involving four or mo
sites. Equation~12! does not uniquely determinê10& t and
^100& t . To treat the three-site correlation functions, we fo
low ^10& t5pV(t) and propose the approximations th
^10& t5pu and ^100& t5pu2, whereu is a parameter related
to the average speedV(t) and remains to be determined.
follows that ^11& t5p(12u) and ^00& t512p2pu. The
other three-site correlation functions can be expressed
terms ofu as

^101& t5^110& t5pu~12u!,

^010& t5^001& t5^100& t5pu2, ~16!

^111& t5p~12u!2.

For the vmax52 model with random delay, we need t
consider the effects of the factorf , which describes the de
gree of randomness. To treat multisite correlation functio
we assume that the case for givenf can be approximated a
a simple average of the two limiting cases corresponding
f 50 and 1. According to this assumption,

^100& t5puF ~12 f !u1 f S 12
pu

12pD G . ~17!

The other correlation functions are treated within the a
proximation discussed in the models without random del
Thus we still havê 10& t5pu and^110& t5pu(12u). It fol-
lows that
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^11& t5p~12u!,

^00& t512p2pu,

^111& t5^11& t2^110& t5p~12u!2,

^010& t5^10& t2^110& t5pu2, ~18!

^101& t5^10& t2^100& t5puF12~12 f !u2 f
12p2pu

12p G ,
^000& t5^00& t2^100& t

512p2pu2puF ~12 f !u1 f
12p2pu

12p G ,
^001& t5^00& t2^000& t5^100& t

5puF ~12 f !u1 f S 12
pu

12pD G .
It should be noted that the above results reduce to thos
the vmax52 model without random delay whenf 50, and
reduce to those of thevmax51 model without delay whenf
51. For f 51, the relationŝ100& t5pu@12pu/(12p)# and
^000& t5(12p2pu)2/(12p) are consistent with the decou
pling scheme of retaining only two-site correlation function
i.e.,

^100& t5
^10& t^00& t

^0& t
5puS 12

pu

12pD ,

^000& t5
^00& t^00& t

^0& t
5

~12p2pu!2

12p
. ~19!

Starting with Eqs.~17! and~18!, we can decouple the corre
lation functions involving more than three sites as follow

^1011& t5^101& t

^011& t

^01& t

5pu~12u!F12~12 f !u2 f
12p2pu

12p G ,
^1101& t5

^110& t^101& t

^10& t
5^1011& t ,

^1100& t5^110& t2^1101& t

5pu~12u!F ~12 f !u1 f
12p2pu

12p G ,
^10 011& t5^100& tP~00u1! tP~01u1! t5^100& t

^001& t

^00& t

^011& t

^01& t

5p2u2~12u!
~12 f !u1 f ~12p2pu!/~12p!

12p2pu
,

^100 011& t

5^100& tP~00u0! tP~00u0! tP~01u1! t
of

,

5p2u2~12u!F ~12 f !u1 f
12p2pu

12p G2

3
12p2pu2pu@~12 f !u1 f ~12p2pu!/~12p!#

~12p2pu!2
,

~20!

^100 101& t5^100& tP~00u1! tP~01u0!tP~10u1! t

5p2u3~12u!@~12 f !u

1 f ~12p2pu!/~12p!#2

3
12~12 f !u2 f ~12p2pu!/~12p!

12p2pu
,

^10 101& t5^101& tP~01u0! tP~10u1! t

5pu2~12u!
@ f pu1~12 f !~12p!~12u!#2

~12p!2
,

^10 100& t5^1010& t2^10101& t

5pu2@12~12 f !u2 f ~12p2pu!/~12p!#

3@~12 f !u1 f ~12p2pu!/~12p!#,

^100 100& t5
^100& t^001& t^010& t^100& t

^00& t^01& t^10& t

5p2u3
@~12 f !u1 f ~12p2pu!/~12p!#3

12p2pu
.

IV. NONLINEAR MAPPING BETWEEN AVERAGE
SPEEDS AND MEAN FIELD EQUATIONS

Substituting the results@Eq. ~20!# for the multisite corre-
lations into the expressions ofV(t) andV(t11) in Eqs.~8!
and ~10!, we obtain

V~ t !5u@11~12 f !U f #,

V~ t11!5~22 f !u$11U f~12u!@12~12 f !U fUp#%

2~12 f !u$~12U f !~12uUf !1 f U f~12uUfUp!

1~12 f !U f
2Up„12U f@~12 f !u1Up~12u!#…%,

~21!

where

U f5~12 f !u1 f
12p2pu

12p
,

Up5
pu

12p2pu
. ~22!

The parameteru can be written explicitly in terms off , p,
andV(t) as
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u5
$~11 f 2 f 2!214~12 f !@12 f /~12p!#v~ t !%1/22~11 f 2 f 2!

2~12 f !@12 f /~12p!#
. ~23!
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Substituting Eqs.~22! and ~23! into Eq. ~21!, we obtain a
nonlinear mappingV(t)→V(t11) between the macroscop
average speeds at two consecutive time steps. The attr
of the mapping gives the mean field result of the aver
speed in the asymptotic steady state. Figure 1 shows
results of our approach for the average speed as a functio
car densityp for different values off for thevmax52 model.
Results are also compared with those obtained by nume
simulations@10#. Results are in good quantitative agreeme
except in the vicinity of the critical point corresponding
the transition from a moving phase to a partially jammi
phase. This slight discrepancy can be attributed to the fi
size of the system used in the simulations, and the finite t
used in the simulations as well as a critical slowing down
should, however, be pointed out that our results forf→0 and
f→1 give the exact mean field results for the case ofvmax
52 andvmax51 models without delay, respectively.

For f→1, the nonlinear mapping of the average spe
@Eq. ~21!# is

V~ t11!52V~ t !2
1

12p
V2~ t !1

p

12p
V3~ t !. ~24!

The fixed pointv5V(t→`) in the long time limit satisfies
the mean field equation

v52v2
1

12p
v21

p

12p
v3. ~25!

The two nonvanishing fixed points arev151 andv251/p
21. The solutionv1 is stable forp in the range 0,p, 1

2,

FIG. 1. The fundamental diagram of the Fukui-Ishibashi tra
flow model for theM52 high-speed car with stochastic delay. T
bold solid curves represent the simulation results. The cros
(3) and the thin line connecting them represent the theoret
calculation results from the mean field equations given in this pa
by the statistical mechanical approach. The 11 curves fr
top to bottom correspond to delay probabilitie
f 50,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, and 1.0, respectively.
tor
e
he
of
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t

te
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andv2 is stable in the range12 ,p,1. These give the exac
result for thevmax51 model without delay as

V~ t→`!5H 1, 0<p<
1

2

1

p
21,

1

2
<p<1.

~26!

Although this result has been reported in the literatu
@2,6,8,9#, our approach is quite different. We started with
microscopic equation for the local updating rule. By statis
cal averaging, we derived a nonlinear mapping describ
the macroscopic time evolution. The attractors and their c
responding basins give the exact average car speed in
long time limit as a function of the car density.

For f→0, the nonlinear mapping of the average spe
@Eq. ~21!# becomes

V~ t !5u21u,

V~ t11!522~12u!F ~11u!~12u!~21u!

1
pu4@32p1~12p!u2pu2#

12p2pu G . ~27!

The fixed points of this dynamical mapping satisfy the eq
tion

u21u522~12u!H ~11u!~12u!~21u!

1
pu4@32p1~12p!u2pu2#

12p2pu J . ~28!

The two nonvanishing solutions areu151 and u21(u2)2

51/p21. They correspond to the asymptotic average spe
v152 and v251/p21, respectively. The correspondin
ranges of car density to whichv1 andv2 apply can be deter-
mined by the basins of the attractors. The conditions of s
bility is u]v(t11)/]v(t)u<1. The range of stability forv1
52 is p, 1

3; while the range of stability forv251/p21 is
p. 1

3. These give the exact result for thevmax52 model
without delay as

V~ t→`!5H 2, 0<p<
1

3

1

p
21,

1

3
<p<1.

~29!

It should be pointed out that Fukui and Ishibashi gave
mean field result of the general case ofvmax5M , using phe-
nomenonlogical arguments, as@10#
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V~ t→`!5H M , 0<p<
1

M11

1

p
21,

1

M11
<p<1.

~30!

This result agrees with numerical simulations. However,
derivation presented in Ref.@10# is not rigorous, and henc
our approach complement that of Ref.@10#. Our approach
can also be extended to cases with random delay.

V. SUMMARY

We studied the one-dimensional traffic flow model pr
posed by Fukui and Ishibashi. The state at each site is c
acterized by a Boolean variable. The updating rule can
described by a microscopic relation betweensi(t) and si(t
11). The average car speed at timet can be expressed m
croscopically in terms of these variables. Carrying o
statitistical averaging and employing a decoupling sche
we arrived at a macroscopic evolution relation. This relat
is expressed as a nonlinear mappingV(t)→V(t11) between
the average speeds at two consecutive time steps. The a
tor of this mapping gives the average speed in the long t
limit. The derivation involves calculations of averages ov
many neighboring sites. We used probability theory an
decoupling scheme to treat these multisite correlation fu
tions. The decoupling scheme is based on the considera
a

e

-
ar-
e

t
e,
n

ac-
e
r
a
c-
on

that, for thevmax5M FI model, only the neighboringM
11 sites of a given site will affect the variable on that si
Hence we retain only averages involving up toM11 sites
and decouple those involving more thanM11 sites into
products of averages involvingM11 or less sites. Our re
sults indicate that the decoupling scheme gives exact res
for models without random delay. The results agree w
with numerical simulations. For models with random dela
an additional approximation is used. It amounts to assum
that the case of arbitraryf can be approximated as a simp
average of the two limiting cases corresponding tof 50 and
1. The results obtained are in good agreement with numer
simulations performed for different values off . Our method
presented here can be generalized to study other traffic
models such as the one-dimensional NS model and the
dimensional BML model. Considerations reflecting other
alistic traffic situations can also be incorporated.
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