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We consider cellular automaton models for one-dimensional traffic flow problems. Starting with a micro-
scopic relation for the updating rule describing the occupancy on each site of the road, a macroscopic evolution
relation for the average speed of cars can be obtained by carrying out statistical averages. Mean field equations
are obtained by considering the asymptotic form of the evolution relation. This gives the average car speed in
the long time limit as a function of the car density. The evolution relation is a nonlinear mapping between the
average speeds at two consecutive time steps. The mean field results can be obtained by studying the attractors
of the mapping. The approach is applied to study the model recently proposed by Fukui and Ishibashi. Our
calculations show that for models in which the maximum speed of each ddr, ia decoupling scheme
retaining correlations up tM + 1 sites can be applied to the calculation of spatial correlations involving more
thanM +1 sites. Exact results are obtained using our approach for models without random delay. For models
with random delay, results are in good agreement with simulation rep8t863-651X98)00403-§

PACS numbe(s): 64.60.Ak, 05.40+j, 05.70.Jk, 89.40:k

I. INTRODUCTION traffic modeld4-7]. It is useful to derive mean field theories
that give the basic relation in quantitative agreement with
Traffic flow is a complex system. The usual method ofactual situation and with numerical simulations, as they can
studying these problems is to perform numerical simulationde used for analytical predictions in traffic control. However,
using high-speed parallel computing. Cellular automatorit is usually difficult to obtain mean field theories with quan-
models become increasingly important in traffic flow prob-titative accuracy. For cellular automaton traffic flow prob-
lems due to their simplicity, and easiness in implementatiodems, successful mean field theory has been proposed for the
in computerg1]. These models capture the nonlinear behavsimplest one-dimensional case in which the maximum speed
ior of traffic flow problems. For example, the two- v, 0Of a car at a time is 1. For models with acceleration as
dimensional Biham-Middleton-LevindBML) cellular au- proposed by Nagel and Schreckenb@x$) [8,9] and with
tomaton model gives the transition between a moving phaseandom delay as proposed by Fukui and Ishib&Bhi [10],
and a jamming phase in the traffic of a di8]. These models numerical results are only available fof,,,>1 cases. For
can also be easily modified to deal with the effects of realthe two-dimensional BML model, Nagatani proposed a mean
istic traffic conditions. Cellular automaton models have beield theory, that is only in qualitative agreement with simu-
come the major approach in studying traffic flow problems.lation data. Wang, Woo, and Hui proposed an improved
An important question in one-dimensional traffic flow on mean field theory with results in better agreement with nu-
a highway deals with the optimum car density for achievingmerical resultg11,12. However, the previous mean field
maximum traffic flux. The basic relation in traffic engineer- theories are phenomenological. They were not derived using
ing is the one relating the flux or the average speed of cars tstatistical mechanical approaches starting from the micro-
the car density on the rogd@]. These relations can be ob- scopic details of the models. In general, the agreement be-
tained by measurements on actual traffic simulations. Fotween these mean field theories and numerical simulations is
theoretical models, the basic relation can be obtained by nuiot so satisfactory.
merical simulations. For some simple models, one can obtain Our aim is to study traffic flow problems from a micro-
the relation analytically using qualitative arguments withinscopic point of view. Starting from the microscopic updating
some reasonable approximations. These mean field apule of a Boolean variable related to the occupancy defined
proaches provide us with some physical understanding of then each site, the average speed at tthean be obtained in
terms of these variables. Systematic statistical mechanical
treatment can be carried out. A decoupling scheme is intro-
* Author to whom correspondence should be addressed. Addrestuced to deal with the spatial correlation functions involving
correspondence to Department of Modern Physics, University oiverages over products of Boolean variables on a string of
Science and Technology of China, Hefei 230026, China. Electroniceighboring sites. A macroscopic dynamical mapping is thus

address: bhwang@nsc.ustc.edu.cn obtained for the average speed. Mean field results can be
"Electronic address: yrkwong@phy.cuhk.edu.hk obtained by studying the attractors of the nonlinear dynami-
*Electronic address: pmhui@phy.cuhk.edu.hk cal system defined by the mapping.
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The microscopic approach in deriving macroscopic results-or the FI model withv ,,,,=M and random delay, the up-
is in line with the viewpoint of statistical mechanics and dating rule is given by
nonlinear dynamics. Such an approach is useful in our un- o
derstanding of traffic flow systems. In Reff$3,14], we stud- S(t+1)=s;(1)s; 1 1(t) +5_1(t) si(t)s;41(1)
ied the NS model withv ,o,=1 as a first attempt in deriving

results within such an approach. In this paper, we shall fur- +8i_5(1) Si_1() (DS (D) + - -+
ther study the FI mod€l10] of high-speed cars, i.€umnay — — —
>1. For thevma=2 FI model, a dynamical relation be- TSi—m+1(D) Si—ms2(t) - - si—1(t) Si(1)Si 41 (1)

tween the average speedét) andV(t+1) is obtained. For

. : . +6;_ £)Si_ms1(t) Si_maalt
the vmax=2 model without delay, we obtained results in =+ 1i(DSi-m 2 (0 S 2(Y)

exact agreement with numerical results. For the model with X'Si maa(t) - S;_1(1)S() Sia4(t)

random delay, mean field results are obtained by studying

the attractors of the dynamical mapping. Results with an ar- + 0w (1- f)sifM(t)S_ifM+1(t)s_ifM+2(t)
bitrary degree of random delay are in good qualitative as o o o

well as quantitative agreement with simulation data. The ap- X -8 _o(t) sy q1(1) si(1), (3)

proach in this work can be generalized to treat the one-

dimensional NS model, the two-dimensional BML model, Where 6 (f) is a random delay factor of thi¢h site at time

and other models with realistic traffic situations incorpo-t- It takes on the value unity with probabilify and vanishes

rated. with probability f =1—f. The factorg; ((f) can be called a
stochastic Boolean variable, and its corresponding conjugate

Il. MODELS AND EVOLUTION EQUATIONS is 6, (f)=1— 6, (f)=6,,(T), which takes on the value
unity with probability 1-f and vanishes with probabilitf;.

~The basic cellular automaton model describing a oneThe variables on the same site at the same time satisfy the
dimensional traffic flow problem is rule 184, as classified byre|ations

Wolfram [1]. Within the model, cars are treated as distin-

guishable particles. The road is modeled by a discrete lattice. 0,(£)0; (F)=6,(T), 6, (f)6; (F)=0. (4)
Each lattice site can be occupied by at most one car. The

system evolves in discrete time steps. At each time step, each To illustrate our approach, we consider the FI model with
particle on the road moves forward one site to the right, sayM =2. It is straightforward to generalize our method to cases
if the site on the right is not occupied by another car at thewith higher values oM. The basic updating rule becomes
previous time step. If the site in front is occupied, the car

will remain stationary even if the blocking car moves away Si(t+1)=s5(0)S+ 1(1)+5i_1() (1) S 4(1)
from the site in front. This model, though simple, exihibits S —
the phenomenon of transition between a moving phase with + 60— 14(F)si—1(t) si(t) Si44(1)

maximum possible speed to a partially jamming phase with
slower speed. As a generalization of the basic rule 184,

Fukui and Ishibashi10] considered a model in which a car | gt | pe the total number of sites on the road ande

may have maximum speagn,—=M (M>1). At each ime  he total number of cars. The average speed at ticen be
step, if there aré/ or more empty sites in front of a car, the expressed microscopically as

car moves forwardM lattice sites. If there are onlX (N

+ 0o (1-D)s_o(1) 51D Si(D).  (5)

<M) empty sites in front of the car, the car moves forward 1 _

N sites. Furthermore, a model with random delay can be V(t):B[<Si(t)si+1(t)>

introduced in the following way. When a car can move for-

ward byM sites, there is a probabilitythat the car will slow +(0; (1= )51 (1) 514 1(1) 515 2(D))], (6)

down and move forward by onlil —1 sites. It should be

pointed out that the acceleration mechanism in the FI modevhere p=N/L is the car density. The angular bracket
is different from that of the NS model, and that each of thesd - - ~)=(1/L)E:‘=1(- - -) represents the spatial average of the
models reflects part of the actual situation in realistic trafficmicroscopic quantities in the curly bracket. This type of av-

problems. erages gives the spatial correlation over a number of neigh-
Let s;(t) be a Boolean variable describing the occupancyboring sites.
of theith lattice site at time. The variable takes og(t) We note that nonvanishing contributions to the average
=1 if the site is occupied ansgi(t)=0 if the site is empty. (---) come only from terms wherg;(t) takes on the value
Rule 184 can be expressed as unity, and wheres () takes on unity, and henag(t) takes
on zero. Hence we introduce the following simplified nota-
Si(t+1)=s;(t)si41(t)+si_1(t) si(1), (1) tions to denote the averages:

where's;(t)=1—s;(t) is the conjugate of the Boolean vari- (5i(0Si+2(0)=(10),
ables;(t). The variables;(t) and s;(t) have the properties (si(t)si41(1))=(11),, 7

si(Osi(t)=s;(t), si(t)s;()=0. (2) (si(t) s 11(t) S; 1 2(t))=(100); .
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etc. For the random variables () there are nonvanishing can be obtained from E@11) as(10);=pV(t). From this we
contributions only when they take on the value unity. There-have
fore, they can be taken outside the angular bracket and re-

placed simply by a factof. Equation(6) for the microscopic (1D¢=(1)—(10=p[1-V(D],
expression of the average speed at tingan then be rewrit-
ten as (00)=1—p—pV(t). (13

1 The averagé110),, which involves more than two sites, can
V()= —[(10)+(1—-)(100)]. (8)  be treated according to probability theory F8] (110),
P = (11), P(11)0),, whereP(110), is the conditional prob-
We can also write down the average speed at tirm@  ability that the (+2)th site is empty given that thi¢h and
from Eq. (6) as (i+1)th sites are occupied. Since each particle can only
move forward one site at a time for theg,,,=1 model, the

1 — influence on the variabls(t) at a site at timé¢ comes only
V(t+1)= B<Si(t+ 1) s+ 1(t+1)[2— 6 141(F) from the two neighboring sites. Therefore, we may ignore
correlations involving more than two sites and retain only
— 0+ 1(1=F)sio(t+1)]), (9)  two-site correlations. We have
Substituting Eq(5) into Eq. (9), and using the relations of (10),
the Boolean variables given by Eq®)—(4), we obtain the P(110),=P(1[0),= (1), =V(1), (14)
average speed at tinte- 1 expressed in the simplified nota-
tions as It follows that
1 110=pV(D)[1-V(1)]. 1
V(t+1)=2—f—6{(2—f)[<11]>t+<101]}t (110=pV(DI (®)] (19
For thev a=2 model without random delay, each par-
+(1—-1)(10 01D ]+ (1—f)[(110D), ticle can at most move forward two sites at a time. In this

case, we cannot simply ignore correlations involving more
+(10 103+ ({1100, +(10 013, than two sites. Not only does the change in the varia}gig
+(10 100,) + (1—)((100 102+ (100 013,) at a site at timet depend on the states of the neighboring
sites, it also depends on the states of the next nearest neigh-
+f(1—-1)(100 100.]}. (10 bors. Therefore we should treat three-site correlations more
] . ] accurately, and decouple correlations involving four or more
Equations(8) and (10) give the relation betweeN(t) and  sjtes. Equation(12) does not uniquely determingl0), and
V(t+1) at two consecutive time steps. Fb=1, the FI  (100),. To treat the three-site correlation functions, we fol-
model reduces to the,= 1 case, which corresponds to the |gy (10),=pV(t) and propose the approximations that

basic rule-184 model. The equations become (10),= pu and(100),= pu?, whereu is a parameter related
1 1 to the average speéd(t) and remains to be determined. It
V(t)==(10);, V(t+1)=1—=((111),+(1011),). follows that (11);=p(1-u) and (00)=1-p—pu. The
p p other three-site correlation functions can be expressed in
(1) terms ofu as
Forf=0, Egs.(8) and(10) give the results corresponding to (101),=(110,=pu(1-u),
the v =2 FI model without random delay. The equations
become (010)=(001),=(100, = pu?, (16)
1 _ 2
V(D=5 ({10+(100,), (11D=p(1 =W

For thev =2 model with random delay, we need to
1 consider the effects of the factér which describes the de-
V(t+1)=2— 6[2(<111>t+<101]>t+<10 01D,)+(1101), gree of randomness. To treat multisite correlation functions,
we assume that the case for givean be approximated as
+(10 10D, +(100 102+(100 012,]. (120  a simple average of the two limiting cases corresponding to
f=0 and 1. According to this assumption,

Ill. DECOUPLING OF SPATIAL CORRELATION

FUNCTIONS (100=pul (1—f)u+f

u

s w
In order to derive a relation betweaf(t) andV(t+1),

we need to treat the spatial correlation functions which aréhe other correlation functions are treated within the ap-

averages of the Boolean variablegt) over a string of proximation discussed in the models without random delay.

neighboring sites. For the FI model without random delayThus we still havg 10),=pu and(110),=pu(1—u). It fol-

and whenv =1, the two-site correlation functioql0),  lows that
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{he=p(i—u), =p2%(1-u)| (1~ f)u+f—_p i
(00)=1—-p—py,
1 p—pu—pul(1-flu+f(l-—p—pu)/(1- P)]
_ _ (12
(119=(12)—(110=p(1—-u)%, (1-p—pu)?
(010 =(10);—(110=pW?, (18 (20)
<101>t:<10>t_<100>t:pu-l_(l_f)u_f# , (100 103;=(100,;P(00/1);P(01/0)tP(10/1),
' P =1 -u)(1-f)u
(000);=(00);—(100), _ +f(1—p—pu)/(1—p)]2
L 1-p 1-p—pu

<001>t: <00>t_<000>t: <100>t

pu
1‘ﬁ)

It should be noted that the above results reduce to those of
the v =2 model without random delay whei=0, and
reduce to those of the,,,=1 model without delay whef

=1. Forf=1, the relationg100);= pu[1—pu/(1—p)] and
(000);=(1—p—pu)?(1—p) are consistent with the decou-
pling scheme of retaining only two-site correlation functions,

(10 10%,=(101),P(01/0),P(10/1),
[fpu+(1 f)(1-p)(1—-u)]?
(1-p)?

=pu (1—-f)u+f

=pu?(1—u

(10 100, =(1010),— (10103,
=pu’[1—(1-fu—f(1-p—pu/(1-p)]
X[(1-Hu+f(1—p—pw/(1-p)],

ie.,

(1000, pu
(100="gy = “(1"“‘>

(100(001)(010(100,
(00)¢(01)(10);

(100 100,=

1-p el DU+ A=p-pui-p))®
<00>t<00>t (1-p—pu)? 1-p—pu

Starting with Eqs(17) and(18), we can decouple the corre-
lation functions involving more than three sites as follows:

011)
(1019~ 101, 5"

IV. NONLINEAR MAPPING BETWEEN AVERAGE
SPEEDS AND MEAN FIELD EQUATIONS

Substituting the resultiEq. (20)] for the multisite corre-
lations into the expressions df(t) andV(t+1) in Eqs.(8)
and(10), we obtain

—pu(1-u)| - (1—fu—f —p pul V(t)=u[1+(1-)Uq],
(110,10 V(t+1)=(2-fu{l+U(1-u)[1—(1-f)UU,]}
(1101:= Wt—mlbt, —(1-fHHuf{(1-Up(1—uUp +fU(1-uUU,)
(1100,=(110),— (1103 +(1-HUFU,A-Ud (1= Hu+Up(1-u)D},
t t t ) . (21)
=pu(l—u)|(1- f)u+f&, where
_ (001, (011), 1-p—pu
(10 012,=(100P(001);P(011);=(100);~~=— {00), (oD, Ui=(1— f)u+f—p,
(1-fu+f(1-p—pu)/(1—-p)
—n212(1 _
=p°u“(1—u) 1-p—pu ' up:%. (22)
(100 013
The parameteu can be written explicitly in terms of, p,
=(100,P(00[0),P(00/0),P(01]1), andV(t) as
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{(1+F— )24+ 4(1—F)[1— f/(1—p)Jo()}2— (1+f—2)
u= .

2(1-H)[1-f/(1—p)] @3

Substituting Eqs(22) and (23) into Eq. (21), we obtain a andu, is stable in the range<p<1. These give the exact
nonlinear mappiny/(t)— V(t+1) between the macroscopic result for thev ,,,,=1 model without delay as
average speeds at two consecutive time steps. The attractor

of the mapping gives the mean field result of the average 1

speed in the asymptotic steady state. Figure 1 shows the 1, ngsz

results of our approach for the average speed as a function of V(t—w)= (26)
car densityp for different values of for theuv ,,,,=2 model. E -1 }$ p<1

Results are also compared with those obtained by numerical p 2

simulations[10]. Results are in good quantitative agreement

except in the vicinity of the critical point corresponding to Although this result has been reported in the literature
the transition from a moving phase to a partially jamming[2,6,8,9, our approach is quite different. We started with a
phase. This slight discrepancy can be attributed to the finitéhicroscopic equation for the local updating rule. By statisti-
size of the system used in the simulations, and the finite timéal averaging, we derived a nonlinear mapping describing
used in the simulations as well as a critical slowing down. Itthe macroscopic time evolution. The attractors and their cor-
should, however, be pointed out that our resultsffer0 and  responding basins give the exact average car speed in the
f—1 give the exact mean field results for the case gf,  long time limit as a function of the car density.

=2 andvm.,=1 models without delay, respectively. For f—0, the nonlinear mapping of the average speed
For f—1, the nonlinear mapping of the average speedEd. (21)] becomes
[Eqg. (2D)] is
V(t)=u?+u,
V(t+1)=2V(t)— Lv2(t)+ LV3(t) (24)
1-p 1-p '

V(t+1)=2—(1-u)|(1+u)(1—u)(2+u)
The fixed pointv =V(t—o0) in the long time limit satisfies

the mean field equation u[3—p+(1—p)u—pu?
q +I0[p(p)p]. 27
1 0 1-p—pu
v=2v— v+ vs. (25 ) . . . ) )
1-p 1-p The fixed points of this dynamical mapping satisfy the equa-
tion
The two nonvanishing fixed points atg=1 andv,=1/p
—1. The solutionv, is stable forp in the range 8<p<3,
u?+u=2—(1—u){ (1+u)(1—u)(2+u)
2
- u[3—p+(1—p)u—pu?
> M =2 +p[p(p)p]. 29
1.6 N : 1-p-pu
3 \ ~ The two nonvanishing solutions arg =1 and u,+ (u,)?
- 2 oo =1/p—1. They correspond to the asymptotic average speeds
% \ v,=2 and v,=1/p—1, respectively. The corresponding
g 08| ' o ranges of car density to whiah, andv, apply can be deter-
«©

mined by the basins of the attractors. The conditions of sta-
bility is |dv(t+1)/dv(t)|<1. The range of stability fov,

04
=2 is p<3; while the range of stability fov,=1/p—1 is
p>3. These give the exact result for thg,,=2 model
0 : -
0 02 04 06 08 p without delay as
vehicle density

1

: e 2, O<ps<g

FIG. 1. The fundamental diagram of the Fukui-Ishibashi traffic 3
flow model for theM =2 high-speed car with stochastic delay. The V(t—owo)= 1 1 (29

bold solid curves represent the simulation results. The crosses ——1, —<p=<1.

(X) and the thin line connecting them represent the theoretical p 3

calculation results from the mean field equations given in this paper

by the statistical mechanical approach. The 11 curves from It should be pointed out that Fukui and Ishibashi gave the
top to bottom correspond to delay probabilities mean field result of the general casevgf,, =M, using phe-
f=0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, and 1.0, respectively. nomenonlogical arguments, BE)|
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1 that, for thev,=M FI model, only the neighboringv
M, O=p= M+1 +1 sites of a given site will affect the variable on that site.
V(t—w)= (30) Hence we retain only averages involving upNb+ 1 sites
- 1 <p=1. and decouple those involving more thah+1 sites into
p 7 M+1 products of averages involvingl +1 or less sites. Our re-

) ) ] ) ) sults indicate that the decoupling scheme gives exact results
This result agrees with numerical simulations. However, thg,r models without random delay. The results agree well

derivation presented in Reff10] is not rigorous, and hence \yith numerical simulations. For models with random delay,
our approach complement that of R¢L0]. Our approach 4, aqditional approximation is used. It amounts to assuming
can also be extended to cases with random delay. that the case of arbitrarf can be approximated as a simple
average of the two limiting cases corresponding 00 and
V. SUMMARY 1. The results obtained are in good agreement with numerical
We studied the one-dimensional traffic flow model Ioro_simulations; performed for different values faf Our method

posed by Fukui and Ishibashi. The state at each site is chaPeSented here can be generalized to study other traffic flow
acterized by a Boolean variable. The updating rule can bg'dels such as the one-dimensional NS model and the two-

described by a microscopic relation betwesft) and s;(t dimensional BML model. Considerations reflecting other re-

+1). The average car speed at titnean be expressed mi- alistic traffic situations can also be incorporated.
croscopically in terms of these variables. Carrying out
statitistical averaging and employing a decoupling scheme,
we arrived at a macroscopic evolution relation. This relation This work was supported in part by the Research Grant
is expressed as a nonlinear mappif{g) —V(t+1) between Council (RGO of the Hong Kong Government through
the average speeds at two consecutive time steps. The attra@rant No. CUHK4191/97P. One of 8.H.W.) would like

tor of this mapping gives the average speed in the long timéo thank the Department of Physics at the Chinese University
limit. The derivation involves calculations of averages overof Hong Kong for their support. B.H.W. acknowledges the
many neighboring sites. We used probability theory and a&upport from the National Basic Research Climbing Project
decoupling scheme to treat these multisite correlation func*Nonlinear Science” and the National Natural Science
tions. The decoupling scheme is based on the consideratidfoundation of ChindGrant No. 49474216

ACKNOWLEDGMENTS

[1] S. Wolfram, Theory and Application of Cellular Automata [8] K. Nagel and M. Schreckenberg, J. Phy®, 2221(1992.

(World Scientific, Singapore, 1986 [9] M. Schreckenberg, A. Schadschneider, K. Nagel, and N. Ito,
[2] O. Biham, A. A. Middleton, and D. Levine, Phys. Rev.45, Phys. Rev. E51, 2939(1995.
R6124(1992. [10] M. Fukui and Y. Ishibashi, J. Phys. Soc. Jp5, 1868(1996.
[3] Transportation and Traffic Theonedited by N. H. Gartener [11] B. H. Wang, Y. F. Woo, and P. M. Hui, J. Phys. 29, L31
and N. H. M. Wilson(Elsevier, New York, 198}/ (1996.
[4] T. Nagatani, Phys. Rev. &8, 3290(1993. [12] B. H. Wang, Y. F. Woo, and P. M. Hui, J. Phys. Soc. J@%.
[5] T. Nagatani, J. Phys. Soc. J@B2, 2656(1993. 2345(1996.
[6] K. H. Chung and P. M. Hui, J. Phys. Soc. J#8, 4338 [13] B. H. Wang, P. M. Hui, and G. Q. Gu, Phys. Let#4, 202
(1994. (1997).

[7] Y. Ishibashi and M. Fukui, J. Phys. Soc. JpB, 2882(1994. [14] B. H. Wang and P. M. Hui, J. Phys. Soc. JpB, 1238(1997.



